Handling, Maintenance, and Storage Guidelines for PFI-RSA6012

(1) **Appearance of the ink when you receive it**
- The ink will be dark gray to black in color and will be viscous

(2) **Storage of the ink when you receive it**
- The ink should be stored in a refrigerator at a temperature between 2 and 9 degrees Celsius
- Do not freeze the ink

(3) **Optimal pH range of the ink during printing**
- The pH of the ink should be between 6.10 and 6.30 (at a temperature between 20 and 23 degrees Celsius)

(4) **Optimal range of relative humidity for printing the ink**
- The local environment of the ink-metering system and the plate cylinder should have the highest humidity possible without condensing droplets of moisture on the apparatus. This type of “spot humidification” can be achieved with the use of a small humidifier and is also applicable when the ink is printed with a Flexiproof or with a handheld proofer.

(5) **How to adjust pH of the ink**
- Remove the ink from the refrigerator and allow it to warm up to room temperature
- Prepare a 0.50 % wt. solution of ammonium hydroxide (pH-increasing solution). Use deionized water and a high purity grade of ammonium hydroxide (e.g. cleanroom grade) to prepare the solution.
- Calibrate your pH probe in buffer solutions of pH 4 and pH 7. For laboratory use, we recommend Hanna Instruments FC210B or FC240B pH probes.
- Place the calibrated pH probe in the ink and begin to mix the ink at a low speed
- A stainless steel spatula may be used for mixing small masses of ink (≤ 300 g) and an overhead mixer may be used for larger masses of ink (> 300 g)
- Add in a dropwise fashion the 0.50 % wt. solution of ammonium hydroxide to the mixing ink until the target pH of the ink is achieved
- Stop the mixing of the ink and remove the pH probe when the target pH is achieved
- The ink is now ready to be used or stored
- Do not increase the pH of the ink above 6.40

(6) **How to adjust the pH of the ink on the flexographic press**
- An On-Press Ink Management Strategy document can be provided to customers who are printing the ink on a flexographic press
(7) Appearance of the ink when the pH is changed

- The ink is less viscous when the pH is less than 6.10 and will undergo phase separation when the pH is less than 6.00. The ink will be restored when the pH is increased to a value between 6.10 and 6.30.
- The ink is viscous when the pH is between 6.10 and 6.30
- The ink is less viscous when the pH is greater than 6.40 and will dry more rapidly

(8) Handling of the ink before it is printed with a Flexiproof or before it used on the flexographic press

- Remove the ink from the refrigerator and allow it to warm up to room temperature
- Mix the ink with a stainless steel spatula (for an ink mass \(\leq 300 \text{ g} \)) or with an overhead stirrer (for an ink mass \(> 300 \text{ g} \))
- Measure the pH of the ink with a calibrated pH probe while the ink is mixing
- If the pH of the ink is in the optimal pH range for printing (between 6.10 and 6.30), the ink is ready to be used
- If the pH of the ink is less than 6.10, the pH of the ink may be increased by following the procedure in (5) How to adjust the pH of the ink

(9) Cleaning of the anilox roll and impression plates after printing

- Watch the YouTube video at https://www.youtube.com/watch?v=ajg1NRanteU&feature=youtu.be

(10) Storage of the ink after it has been printed with a Flexiproof or after it has been used on the flexographic press

- Measure the pH of the ink with a calibrated pH probe while the ink is mixing
- If the pH of the ink is in the optimal pH range for printing (between 6.10 and 6.30), the ink should be transferred to a container(s) with a small amount of headspace
- If the pH of the ink is less than 6.10, increase its pH to a value between 6.10 and 6.30 by following the procedure in (5) How to adjust the pH of the ink
- Transfer the ink to a container(s) with a small amount of headspace
- The ink may now be refrigerated between 2 and 9 degrees Celsius

All questions about the ink or printing of the ink should be directed to Ronald I. Dass (ron.dass@novacentrix.com) and Ian Rawson (ian.rawson@novacentrix.com)