EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 05.07.2017 Bulletin 2017/27

(21) Application number: 09820923.2

(22) Date of filing: 25.03.2009

(54) METHOD FOR REDUCING THIN FILMS ON LOW TEMPERATURE SUBSTRATES
VERFAHREN ZUR REDUZIERUNG VON DÜNNSCHICHTEN AUF NIEDERTEMPERATURSUBSTRATEN
PROCÉDÉ POUR RÉDUIRE DES FILMS MINCES SUR DES SUBSTRATS À BASSE TEMPÉRATURE

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

(30) Priority: 17.10.2008 US 196531 P

(43) Date of publication of application: 27.07.2011 Bulletin 2011/30

(73) Proprietor: Ncc Nano, Llc
Dallas, TX 75250 (US)

(72) Inventors:
• POPE, Dave, S.
 Austin, TX 78726 (US)
• SCHRODER, Kurt, A.
 Coupland, TX 78615 (US)

(74) Representative: Hackney, Nigel John et al
Mewburn Ellis LLP
City Tower
40 Basinghall Street
London EC2V 5DE (GB)

(56) References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)
1. Technical Field

[0001] The present invention relates to curing method in general, and, in particular, to a method for reducing thin films on low-temperature substrates.

2. Description of Related Art

[0002] One approach to making electronic circuits is to print electrical conductors with metallic ink onto a substrate, and the substrate is then heated to sinter the particles of the metallic ink in order to form electrical conducting traces. Generally, most printed metals suitable for electrically conduction need to be heated to a very high temperature, often within a couple hundred degrees centigrade of their melting point, in order to sinter and become conductive.

[0003] Two of the most pursued elements for making conductive traces in printed electronics are silver and copper. Silver has two advantages over copper because silver can be heated in air with minimal oxidation and that its oxides, which are comparatively low in conductivity, decompose at relatively low temperatures. These two qualities, coupled with the fact that silver is the most electrically conductive metal often outweigh its high cost when making conductive traces. Thus, even though copper has about 90% of the conductivity of silver and it is usually 50-100 times cheaper on a mass basis, silver inks still dominate the printed electronics market because the additional cost of making and processing copper inks to avoid oxidation is generally higher than the difference in material costs.

[0004] It is well-known in the prior art that some metal oxides can be reduced by hydrogen or hydrocarbons at an elevated temperature if they have a positive reduction potential. For example, copper can be first extracted by mixing copper oxide bearing ore with charcoal along with an application of heat. When oxidized copper particles or even pure copper oxide is heated in the presence of a reducer, the oxidized copper particles can sinter to form a conductor.

[0005] When making thin film conductors by printing copper particles, a very conductive trace can be formed if the particles are heated to their sintering temperature in an inert or reducing atmosphere. Since the melting point of copper is nearly 1,085 °C, the temperature required for sintering dictates that only high temperature substrates such as glass or ceramic can be used. Such high-temperature requirement prevents the usage of inexpensive substrates such as paper or plastic.

[0006] Alternatively, if a copper particle film is deposited on a low-temperature substrate, it can be heated to near the substrate’s decomposition temperature and then placed in a reducing atmosphere, but the low temperature dramatically increases the amount of time needed for curing from seconds to minutes or even hours, depending on the thickness of the film and the temperature. At low temperatures, sintering is very limited, and thus the film resistivity becomes high. Furthermore, the need for an inert or reducing atmosphere also dramatically increases processing cost. Thus, it would be desirable to provide an improved method for rapidly reducing metal oxide on low-temperature substrates in ambient atmosphere.

[0007] US 4526807 describes that metal and metalloids may be deposited in the form of conducting lines, spots and the like by preparing a solution or dispersion of a reducible metal or metalloid compound in an oxidizable organic matrix such as polyamic acid or polyimide, coating the substrate with the solution or dispersion, and contacting the coated substrate with a beam of localised radiation absorbable by the substrate. The beam of localised radiation is typically a laser beam.

SUMMARY OF THE INVENTION

[0008] In accordance with a preferred embodiment of the present invention, a reducible metal compound and a reducing agent are initially dispersed in a liquid, such as water. The dispersion is then deposited on a substrate to form a thin film. The thin film along with the substrate is subsequently exposed to a pulsed electromagnetic emission to chemically react with the reducible metal compound and the reducing agent such that the thin film becomes electrically conductive. The substrate is one of paper or polyethylene terephthalate (“PET”).

[0009] All features and advantages of the present invention will become apparent in the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The invention itself, as well as a preferred mode of use, further objects, and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:

Figure 1 is a flow diagram of a method for curing a thin film on a low-temperature substrate, in accordance with a preferred embodiment of the present invention; and

Figure 2 is a diagram of a curing apparatus, in accordance with a preferred embodiment of the present invention.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

[0011] For the present invention, curing is defined as thermal processing, which includes reducing a metal
compound contained within a thin film on a low-temperature substrate. A thin film is defined as a coating of less than 100 microns thick. Examples of low-temperature substrates include paper, plastic or polymer.

0012 The present invention is a method for providing activation energy to perform a reduction-oxidation reaction in a thin film using intense pulsed light. The redox reaction may be the reduction of a metal oxide by an organic compound and may be performed on a low-temperature substrate.

0013 Referring now to the drawings and in particular to Figure 1, there is depicted a flow diagram of a method for curing a thin film on a low-temperature substrate, in accordance with a preferred embodiment of the present invention. Starting in block 100, a non-conducting metal oxide is dispersed in a liquid, such as water, using any number of common dispersing agents such as polyvinylpyrrolidone or polystyrene-acrylate copolymers, as shown in block 110. The dispersion also includes at least one reducing agent. The reducing agent may be any number of compounds including alcohols, aldehydes, carboxylic acids and carbon black. Reducing agents preferably include glycerol, ascorbic acid, 1,2-hexanediol and glutaric acid. Other additives may include various surfactants for surface wetting, humectants, co-solvents, and binder resins. The dispersion may include conducting particles such as silver, copper, or gold. The dispersion may also contain partially oxidized metal particles. The non-conducting metal oxide can be any metal oxide listed in Table I.

Table I

<table>
<thead>
<tr>
<th>Compound</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoO₃, MoO₂</td>
<td>Molybdenum oxide</td>
</tr>
<tr>
<td>WO₂, WO₃</td>
<td>Tungsten oxide</td>
</tr>
<tr>
<td>Re₂O₅, Re₂O₇, ReO₃</td>
<td>Rhenium oxide</td>
</tr>
<tr>
<td>Fe₂O₃, Fe₃O₄</td>
<td>Iron oxide</td>
</tr>
<tr>
<td>RuO₂</td>
<td>Ruthenium oxide</td>
</tr>
<tr>
<td>OsO₂</td>
<td>Osmium oxide</td>
</tr>
<tr>
<td>Co₂O₃, Co₃O₄</td>
<td>Cobalt oxide</td>
</tr>
<tr>
<td>Rh₂O₃, Rh₂O₅</td>
<td>Rhodium oxide</td>
</tr>
<tr>
<td>Ir₂O₃</td>
<td>Iridium oxide</td>
</tr>
<tr>
<td>NiO</td>
<td>Nickel oxide</td>
</tr>
<tr>
<td>PdO</td>
<td>Palladium oxide</td>
</tr>
<tr>
<td>PtO₂</td>
<td>Platinum oxide</td>
</tr>
<tr>
<td>Cu₂O, CuO</td>
<td>Copper oxide</td>
</tr>
<tr>
<td>Ag₂O</td>
<td>Silver oxide</td>
</tr>
<tr>
<td>Ag₂O₃</td>
<td>Gold oxide</td>
</tr>
<tr>
<td>ZnO</td>
<td>Zinc oxide</td>
</tr>
<tr>
<td>CdO</td>
<td>Cadmium oxide</td>
</tr>
<tr>
<td>In₂O₃</td>
<td>Indium oxide</td>
</tr>
<tr>
<td>GeO, GeO₂</td>
<td>Germanium oxide</td>
</tr>
<tr>
<td>SnO, SnO₂</td>
<td>Tin oxide</td>
</tr>
<tr>
<td>PbO, PbO₂</td>
<td>Lead oxide</td>
</tr>
<tr>
<td>Sb₂O₃, Sb₂O₅, Sb₂O₅</td>
<td>Antimony oxide</td>
</tr>
<tr>
<td>Bi₂O₃</td>
<td>Bismuth oxide</td>
</tr>
</tbody>
</table>

0014 The dispersion is then deposited on a low-temperature substrate as a thin film, as depicted in block 120. The low-temperature substrate can be polymer (polymide, polyethylene terephthalate, polyethylene naphthalate, polyethylene, polycarbonate, polysyrene, polyvinyl chloride, etc.), paper, etc. The dispersion may be deposited on a low-temperature substrate by any common printing technique including inkjet, gravure, flexographic, rollcoating, screen-printing and the like. Conversely, the non-conducting metal oxide and reducer (i.e., reducing agent) may be deposited on a low-temperature substrate as a thin film using a dry deposition process such as xerography.

0015 The thin film along with the low-temperature substrate are subsequently exposed to a pulsed electromagnetic emission in order to initiate a redox reaction between the non-conducting metal oxide and reducer on the low-temperature substrate, as shown in block 130. The pulsed electromagnetic source can be a laser, flash lamp, directed plasma arc lamp, microwave, or radiofrequency induction heater capable of delivering a pulse length of less than 20 ms. An alternative embodiment is the use of an electron beam or intense arc lamp to deposit heat into the film to initiate the redox reaction as the film is being conveyed past the source of radiation. For the electron beam and arc lamp sources, the combination of a moving substrate and a static source has the effect of providing pulsed heating of the film. The electromagnetic source should have an emission greater than 500 W/cm². As a result of the exposure, the thin film is rendered electrically conductive after the redox reaction.

0016 Preferably, the thin film is cured while the low-temperature substrate is being conveyed past the light source using an automated curing apparatus as described below.

0017 With reference now to Figure 2, there is illustrated a diagram of a curing apparatus for curing thin films on low-temperature substrates, in accordance with a preferred embodiment of the present invention. As shown, a curing apparatus 200 includes a conveyor system 210, a strobe head 220, a relay rack 230 and a reel-to-reel feeding system 240. Curing apparatus 200 is capable of curing a thin film 202 mounted on a low-temperature substrate 203 situated on a web being conveyed past a strobe head 220 at a relatively high speed. Conveyor system 210 can preferably operate at speeds from 2 to 1000 feet/min to move substrate 203. Curing apparatus 200 can preferably accommodate a web width of any width in 6-inch increments. Thin film 202 can be added on substrate 203 by one or combinations of existing technologies such as screen-printing, inkjet printing, gravure, laser printing, xerography, pad printing, painting, dippen, syringe, airbrush, flexographic, CVD, PECVD, evaporation, sputtering, etc. The deposition of thin film 202 onto substrate 203 may be performed inline with the curing process.

0018 Strobe head 220, which is preferably water cooled, includes a high-intensity pulsed xenon flash lamp...
for curing thin film 202 located on substrate 203. Pulsed xenon flash lamp 221 can provide pulses of different intensity, pulse length, and pulse repetition frequency. For example, pulsed xenon lamp 221 can provide 10 μs to 10 ms pulses with a 3° by 6° wide footprint at a pulse repetition rate of up to 1 kHz. The spectral content of the emissions from pulsed xenon flash lamp 221 ranges from 200 nm to 2,500 nm. The spectrum can be adjusted by replacing the quartz lamp with a cerium doped quartz lamp to remove most of the emission below 350 nm. The quartz lamp can also be replaced with a sapphire lamp to extend the emission from approximately 140 nm to approximately 4,500 nm. Filters may also be added to remove other portions of the spectrum. Flash lamp 221 can also be a water wall flash lamp that is sometimes referred to as a Directed Plasma Arc (DPA) lamp.

[0019] Relay rack 230 includes an adjustable power supply, a conveyance control module, and a strobe control module. The adjustable power supply can produce pulses with an energy of up to 4 kilojoules per pulse. Adjustable power supply is connected to pulsed xenon flash lamp 221, and the intensity of the emission from pulsed xenon flash lamp 221 can be varied by controlling the amount of current passing through pulsed xenon flash lamp 221.

[0020] The adjustable power supply controls the emission intensity of pulsed xenon flash lamp 221. The power, pulse duration and pulse repetition frequency of the emission from pulsed xenon flash lamp 221 are electronically adjusted and synchronized to the web speed to allow optimum curing of thin film 202 without damaging substrate 203, depending on the optical, thermal and geometric properties of thin film 202 and substrate 203.

[0021] During the curing operation, substrate 203 as well as thin film 202 are being moved by conveyor system 210. Conveyor system 210 moves thin film 202 under strobe head 220 where thin film 202 is cured by rapid pulses from pulsed xenon flash lamp 221. The power, duration and repetition rate of the emissions from pulsed xenon flash lamp 221 are controlled by strobe control module, and the speed at which substrate 203 is being moved past strobe head 220 is determined by conveyor control module.

[0022] A sensor 250, which can be mechanical, electrical, or optical, is utilized to sense the speed of conveyor system 210. For example, the conveyor belt speed of conveyor belt system 210 can be sensed by detecting a signal from a shaft encoder connected to a wheel that makes contact with the moving conveyor belt. In turn, the pulse repetition rate can be synchronized with the conveyor belt speed of conveyor belt system 210. The synchronization of the strobe pulse rate f is given by:

\[f = 0.2 \times s \times o/w \]

where:

- s = web speed [ft/min]
- o = overlap factor
- w = curing head width [in]

Overlap factor is the average number of strobe pulses that are received by a substrate at any one location. For example, with a web speed of 200 ft/min, an overlap factor of 5, and a curing head width of 2.75 inches, the pulse rate of the strobe is 72.7 Hz. [0023] When flash lamp 221 is pulsed, thin film 202 is momentarily heated to provide activation energy for a redox reaction. When a rapid pulse train is combined with moving substrate 203, a uniform cure can be attained over an arbitrarily large area as each section of thin film 202 may be exposed to multiple pulses, which approximates a continuous curing system such as an oven.

[0024] Unlike the prior art, in which reducers or fluxes have been introduced to remove oxide from metal particles before curing, the method of the present invention places a reducer directly in a thin film along with the oxide to be reduced by an intense pulsed light. The process can be performed in air because the requirement of an inert or reducing environment is obviated by the brief time of the reaction. Basically, the thin film is heated briefly to a high enough temperature in order for the reducer and the oxide to react, but the time of the reaction is brief enough to prevent significant chemical reaction with the air.

[0025] As a result of the intense pulsed light, the metal oxide is reduced by the reducer in the film resulting in a thin film of metal. Although the radiated power per unit area from the pulsed light source is very high (~2 kW/cm²), the pulse duration is so short that little energy (~2 J/cm²) is deposited on substrate 103. Hence, substrate 103 is undamaged. Thus, the method of present invention allows a high-temperature redox reaction to occur on a thermally fragile substrate such as a plastic or paper. The process happens so quickly that oxidation of the metal in air is minimal, so an inert or reducing atmosphere is not needed. In addition to reducing the metal oxide, the intense pulsed light has the added benefit of sintering the metal particles to form a highly conductive trace without damaging the substrate. Both the reduction and the sintering appear to happen from each pulse of light.

[0026] As an alternative embodiment, the reducer is a metal with a negative reduction potential, such as aluminum, magnesium, or lithium. This allows the reduction of materials that do not have a positive reduction potential. The reducing metal may be in particulate or film form.

[0027] As another alternative embodiment, a method for cleaning or reacting with a surface is performed by depositing a reacting film on a surface and exposing the film to an intense pulsed light to react the film with the surface. In short, a relatively innocuous chemical heated to a very high temperature can have a similar chemical activity as a relatively dangerous one at room temperature. Applications include cleaning agents, surface prep-
paration, etc. Since a relatively innocuous agent is only very active at high temperature, this means that a safer, and potentially more environmental cleaning agent can be used in place of a more dangerous one. Storage of such an agent is safer, and disposal of the agent after use is more inexpensive and environmental.

[0028] The following paragraph illustrates what is happening to a thin film during the process of the present invention. A typical thickness of a thin film is 1 micron, and the typical thickness of a substrate is 150 microns (6 mils). A preferred pulse on a copper oxide/organic reducer based films is 330 V with a 1,000 microsecond pulse length. This setting corresponds to a radiant exposure of 1.7 J/cm² or an average radiated power of 1.7 kW/cm². Ignoring the radiation losses, energy absorbed by evaporation of solvent, energy absorbed by melting of the PET at the interface of the thin film, and energy liberated from the redox reaction being performed a thermal simulation of the system assuming natural convection losses at the interfaces. Assuming the curing apparatus from Figure 1 is at room temperature (25 °C) before the pulse, the calculated the peak temperature of the thin film at the end of the 1 ms pulse is about 1,040 °C. The entire film/substrate returned to below the published 150 °C decomposition temperature of PET within 25 ms. This heating is performed with no apparent damage to the substrate. However, unlike a typical convection oven set at the published decomposition temperature of PET, the considerably higher peak temperature provides ample activation energy for the redox reaction to occur. Since the redox reaction is certainly completed in a time frame shorter than 25 ms, there is not adequate time for the copper to be oxidized by the air. Hence, the redox reaction occurs and oxidation of the copper does not. Thus, a highly conductive copper film is created. Also, given the temperature that the thin film reaches, the resulting copper particles are also sintered by the pulse of light. The sintering has the effect of increasing both the electrical conductivity and stability of the film.

[0029] One advantage of the method of the present invention is that the reduction can be completed very rapidly, which makes it compatible with high-speed printing and web handling techniques. As a result, high temperature processing can be performed on inexpensive, low temperature substrates such as paper, plastic, or polymer. Another advantage of the method of the present invention is that the reduction can be performed in an ambient environment such as air. A further advantage of the method of the present invention is that copper, oxidized copper, or even copper oxide can be deposited on substrates and cured to resistivities rivaling printed silver at a cost dramatically lower than silver. More specifically, copper oxidizes when it is heated in air. This invention allows the curing of copper particles in air rendering a highly conductive film regardless of their level of oxidation.

[0030] As has been described, the present invention provides a method for rapidly reducing thin films on low-temperature substrates.

EXAMPLES

Example 1 - Ascorbic acid reducer

[0031] A copper oxide dispersion was produced by mixing 3.0g <50nm copper (II) oxide, 3.6g deionized water, 0.15g PVP K-30, 0.3g ethylene glycol, 0.04g Tergitol® TMN-6, 0.02g Dynol® 604, 0.02g BYK®, 0.20g, and 0.16g ascorbic acid in a 20mL vial. 5g of zirconium oxide milling media was added and the vial was agitated for 60 minutes.

[0032] The dispersion was applied to a sheet of Melinex® ST505 PET by drawdown using a #5 Meyer bar.

[0033] The sample was cured with a pulse length of 1,000 microseconds, and overlap factor of 2 at 24 feet per minute in an air environment. Although the film was not electrically conductive, the color of the film changed from dark brown to a copper color indicating significant conversion of the copper oxide to copper.

Example 2 - Ethylene glycol/glycerol reducer

[0034] A copper oxide dispersion was produced by mixing 2.0g NanoArc® copper oxide, 5.7g deionized water, 0.10g PVP K-30, 0.6g ethylene glycol, 0.03g Tergitol® TMN-6, 0.01g Dynol® 604, and 0.32g glycerol in a 20mL vial. 5g of zirconium oxide milling media was added and the vial was agitated for 60 minutes.

[0035] The dispersion was applied to a sheet of Melinex® ST505 PET by drawdown using a #5 Meyer bar.

[0036] The sample was cured with a pulse length of 850 microseconds, and overlap factor of 2 at 24 feet per minute in an air environment. Although the film was not electrically conductive, the color of the film changed from dark brown to a copper color indicating significant conversion of the copper oxide to copper.

Example 3 - Ethylene glycol/glycerol reducer

[0037] A copper oxide dispersion was produced by mixing 2.0g NanoArc® copper oxide, 5.4g deionized water, 0.10g PVP K-30, 0.6g ethylene glycol, 0.03g Tergitol® TMN-6, 0.01g Dynol® 604, and 0.67g glycerol in a 20mL vial. 5g of zirconium oxide milling media was added and the vial was agitated for 60 minutes.

[0038] The dispersion was applied to a sheet of Melinex® ST505 PET by drawdown using a #5 Meyer bar.

[0039] The sample was cured with a pulse length of 1,000 microseconds, and overlap factor of 3 at 24 feet per minute in an air environment. Although the film was not electrically conductive, the color of the film changed from dark brown to a copper color indicating significant conversion of the copper oxide to copper.
Example 4 - Ethylene glycol/glycerol reducer

[0040] A copper oxide dispersion was produced by mixing 2.0g NanoArc® copper oxide, 4.9g deionized water, 0.10g PVP K-30, 0.5g ethylene glycol, 0.03g Tergitol® TMN-6, 0.01g Dynol® 604, and 1.32g glycerol in a 20mL vial. 5g of zirconium oxide milling media was added and the vial was agitated for 60 minutes.

[0041] The dispersion was applied to a sheet of Melinex® ST505 PET by drawdown using a #5 Meyer bar.

[0042] The sample was cured with a single pulse at 750V with a pulse length of 2,300 in an air environment. The color of the film changed from dark brown to a copper color indicating significant conversion of the copper oxide to copper. The sheet resistance of the film was 4.1 Ω/sq.

Example 5 - glucose reducer

[0043] A copper oxide dispersion was produced by mixing 1.75g NanoArc® copper oxide, 5.3g deionized water, 0.09g PVP K-30, 0.6g ethylene glycol, 0.02g Tergitol® TMN-6, 0.01g Dynol® 604, and 0.79g glucose in a 20mL vial. 5g of zirconium oxide milling media was added and the vial was agitated for 60 minutes.

[0044] The dispersion was applied to a sheet of Melinex® ST505 PET by drawdown using a #5 Meyer bar. Separately, the dispersion was applied to a sheet of Epson Photo Paper by drawdown using a #5 Meyer bar.

[0045] The sample was cured with a pulse length of 400 microseconds, and overlap factor of 2 at 24 feet per minute for three passes in an air environment. Although the film was not electrically conductive, the color of the film changed from dark brown to a copper color indicating significant conversion of the copper oxide to copper.

Example 6 - Glucose reducer

[0046] A copper oxide dispersion was produced by mixing 1.75g NanoArc® copper oxide, 5.3g deionized water, 0.09g PVP K-30, 0.6g ethylene glycol, 0.02g Tergitol® TMN-6, 0.01g Dynol® 604, and 1.59g glucose in a 20mL vial. 5g of zirconium oxide milling media was added and the vial was agitated for 60 minutes.

[0047] The dispersion was applied to a sheet of Melinex® ST505 PET by drawdown using a #5 Meyer bar.

[0048] The sample was cured with a pulse length of 800 microseconds, and overlap factor of 2 at 24 feet per minute in an air environment. The color of the film changed from dark brown to a copper color indicating significant conversion of the copper oxide to copper. The sheet resistance of the film was 2.2 Ω/sq.

Example 7 - Hexanediol reducer

[0049] A copper oxide dispersion was produced by mixing 1.5g NanoArc® copper oxide, 7.5g deionized water, 0.08g PVP K-30, 0.8g ethylene glycol, 0.03g Tergitol® TMN-6, 0.02g Dynol® 604, and 0.47g 1,2-hexanediol in a 20mL vial. 5g of zirconium oxide milling media was added and the vial was agitated for 60 minutes.

[0050] The dispersion was applied to a sheet of Melinex® ST505 PET by drawdown using a #5 Meyer bar.

[0051] The sample was cured with a pulse length of 600 microseconds, and overlap factor of 2 at 24 feet per minute in an air environment. Although the film was not electrically conductive, the color of the film changed from dark brown to a copper color indicating significant conversion of the copper oxide to copper.

Example 8 - Glutaric acid reducer

[0052] A copper oxide dispersion was produced by mixing 1.5g <50nm copper (I) oxide, 6.8g deionized water, 0.08g PVP K-30, 0.8g ethylene glycol, 0.03g Tergitol® TMN-6, 0.02g Dynol® 604, and 0.47 glutaric acid in a 20mL vial. 5g of zirconium oxide milling media was added and the vial was agitated for 60 minutes.

[0053] The dispersion was applied to a sheet of Melinex® ST505 PET by drawdown using a #5 Meyer bar.

[0054] The sample was cured with a pulse length of 1,200 microseconds, and overlap factor of 3 at 25 feet per minute in an air environment. The color of the film changed from dark brown to a copper color indicating significant conversion of the copper oxide to copper. The sheet resistance of the film was 2.7 Ω/sq.

Example 9 - Polyacrylamide reducer

[0055] A copper oxide dispersion was produced by mixing 1.75g NanoArc® copper oxide, 5.3g deionized water, 0.09g PVP K-30, 0.6g ethylene glycol, 0.02g Tergitol® TMN-6, 0.01g Dynol® 604, and 1.25g polyacrylamide in a 20mL vial. 5g of zirconium oxide milling media was added and the vial was agitated for 60 minutes.

[0056] The dispersion was applied to a sheet of Melinex® ST505 PET by drawdown using a #5 Meyer bar.

[0057] The sample was cured with a pulse length of 800 microseconds, and overlap factor of 2 at 24 feet per minute in an air environment. Although the film was not electrically conductive, the color of the film changed from dark brown to a copper color indicating significant conversion of the copper oxide to copper.

Example 10 - Pentaerythritol reducer

[0058] A copper oxide dispersion was produced by mixing 1.75g NanoArc® copper oxide, 5.3g deionized water, 0.09g PVP K-30, 0.6g ethylene glycol, 0.02g Tergitol® TMN-6, 0.01g Dynol® 604, and 0.90g pentaerythritol in a 20mL vial. 5g of zirconium oxide milling media was added and the vial was agitated for 60 minutes.

[0059] The dispersion was applied to a sheet of Melinex® ST505 PET by drawdown using a #5 Meyer bar.

[0060] The sample was cured with a pulse length of 600 microseconds, and overlap factor of 2 at 24 feet per minute in an air environment. Although the film was not
electrically conductive, the color of the film changed from dark brown to a copper color indicating significant conversion of the copper oxide to copper.

Example 11 - Succinic acid reducer

A copper oxide dispersion was produced by mixing 1.75g NanoArc® copper oxide, 5.3g deionized water, 0.09g PVP K-30, 0.6g ethylene glycol, 0.02g Tergitol® TMN-6, 0.01g Dynol® 604, and 0.71g succinic acid (sodium salt) in a 20mL vial. 5g of zirconium oxide milling media was added and the vial was agitated for 60 minutes.

The dispersion was applied to a sheet of Melinex® ST505 PET by drawdown using a #5 Meyer bar.

Example 12 - Carbon reducer

A copper oxide dispersion was produced by mixing 1.75g NanoArc® copper oxide, 5.3g deionized water, 0.09g PVP K-30, 0.6g ethylene glycol, 0.02g Tergitol® TMN-6, 0.01g Dynol® 604, and 0.32g carbon black in a 20mL vial. The dispersion was applied to a sheet of Melinex® ST505 PET by drawdown using a #5 Meyer bar.

Example 13 - Uric acid reducer

A copper oxide dispersion was produced by mixing 1.75g NanoArc® copper oxide, 5.3g deionized water, 0.09g PVP K-30, 0.6g ethylene glycol, 0.02g Tergitol® TMN-6, 0.01g Dynol® 604, and 0.01g uric acid in a 20mL vial. The dispersion was applied to a sheet of Melinex® ST505 PET by drawdown using a #5 Meyer bar.

The sample was cured with a pulse length of 300 microseconds, and overlap factor of 2 at 24 feet per minute in an air environment. Although the film was not electrically conductive, the color of the film changed from dark brown to a copper color indicating significant conversion of the copper oxide to copper.

Example 14 - Inkjet with glycerol reducer

A copper oxide dispersion was produced by first milling a mixture of 52.5g NanoArc® copper oxide, 2.6g PVP K-30, and 294.9g deionized water. The resulting average particle size was 115nm. An inkjet ink was produced by mixing 8.4g of the milled copper oxide dispersion, 1.0g glycerol, 0.5g ethylene glycol, 0.04g Triton® X-100, and 0.03g BYK®-020.

The inkjet ink was printed using a desktop inkjet printer onto Pictorico brand PET.

Example 15 - Copper powder with ascorbic acid and glycercol reducer

A copper dispersion was produced by mixing 2.5g of Mitsui copper powder, 0.04g of BYK®-020, 0.04g of Tergitol® TMN-6, 0.25g of PVP K-30, 0.89g of glycerol, 0.45g of ethylene glycol, 0.76g of ascorbic acid in 7.57g of deionized water.

The sample was cured with a pulse length of 1,000 microseconds, and overlap factor of 4 at 24 feet per minute in an air environment. The color of the film changed from dark brown to a copper color indicating significant conversion of the copper oxide to copper. The sheet resistance of the film was 40 mΩ/sq.

Example 16 - Inkjet with ascorbic acid reducer

A copper oxide dispersion was produced by first milling a mixture of 52.5g NanoArc® copper oxide, 2.6g PVP K-30, and 294.9g deionized water. The resulting average particle size was 115nm. A first inkjet ink was produced by mixing 8.4g of the milled copper oxide dispersion, 1.0g glycerol, 0.5g ethylene glycol, 0.04g Triton® X-100, and 0.03g BYK®-020. A second inkjet ink was produced by mixing 0.1g of BYK®-020, 0.2g of Triton® X-100, 10.0 g of ascorbic acid, 3.0g of ethylene glycol, 4.5g of glycerol in 42.5g of deionized water.

Both inkjet inks were printed sequentially using an inkjet printer onto Pictorico brand PET.
The first solution was deposited on ordinary glycol, 4.5 g of glycerol in 42.5 g of deionized water.

Example 17 - Copper sulphate with ascorbic acid reducer

A first solution was made with 20wt%CuSO4·5H2O in deionized water. A second solution was produced by mixing 0.1 g of BYK®-020, 0.2 g of Triton® X-100, 10.0 g of ascorbic acid, 3.0 g of ethylene glycol, 4.5 g of glycerol in 42.5 g of deionized water.

The sample was cured with a pulse length of 1,000 microseconds, and overlap factor of 4 at 24 feet per minute for three passes in an air environment. Although the film was not electrically conductive, the color of the film changed from dark brown to a copper color indicating significant conversion of the copper oxide to copper. Under a low magnification microscope it was observed that the copper coated the fibers of the paper.

Example 18 - Aluminum reducer

A dispersion was made with 0.29g of Valimet-H2 aluminum powder, 0.77g of <5micron copper (II) oxide from Sigma-Aldrich, 0.11g of PVP K-30 in 6.0g of deionized water.

The sample was cured with a pulse length of 1,000 microseconds, and overlap factor of 2 at 28 feet per minute in an air environment. Although the film was not electrically conductive, the film converted from a dark brown to a copper color.

In contrast, identical films were prepared in all of the above examples were placed in an oven containing an air atmosphere at 150 °C for 30 minutes. 150 °C was chosen since it is the highest working temperature for PET. No conversion was observed, and no films had any measurable electrical resistance (greater than 400 MΩ/square).

While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the scope of the accompanying claims.

Claims

1. A method for producing an electrically conductive thin film on a substrate, said method comprising:

 - dispersing (110) a reducible metal compound and a reducing agent in a liquid;
 - depositing (120) said dispersion on a substrate (203) to form a thin film (202); and
 - exposing (130) said thin film (202) along with said substrate (203) to a pulsed electromagnetic emission in an ambient atmosphere to chemically react said reducible metal compound and said reducing agent to render said thin film (202) electrically conductive;

 characterized in that:

 - said substrate is one of paper or Polyethylene terephthalate ("PET").

2. The method of Claim 1, wherein said paper is coated with an ink receiving layer.

3. The method of Claim 1, wherein said PET is coated with an ink receiving layer.

4. The method of Claim 1, wherein said reducible metal compound is a metal oxide.

5. The method of Claim 1, wherein said reducible metal compound is a compound selected from the group consisting of molybdenum oxide, tungsten oxide, rhenium oxide, iron oxide, ruthenium oxide, osmium oxide, cobalt oxide, rhodium oxide, iridium oxide, nickel oxide, palladium oxide, platinum oxide, copper oxide, silver oxide, gold oxide, zinc oxide, cadmium oxide, indium oxide, germanium oxide, lead oxide, antimony oxide and bismuth oxide.

6. The method of Claim 1, wherein said reducible metal compound is a metal salt.

7. The method of Claim 1, wherein said reducing agent is a compound selected from the group consisting of alcohols, aldehydes, carboxylic acids and carbon black.

8. The method of Claim 1, wherein said reducing agent is selected from a group of aluminum, magnesium and lithium.

9. The method of Claim 1, wherein said reducing agent further includes glycerol, ascorbic acid, 1,2-hexanediol and glutaric acid.

10. The method of Claim 1, wherein said dispersing further includes dispersing said reducible metal compound and said reducing agent using any number of
dispersing agents including polyvinylpyrrolidone or polystyrene-acrylate copolymers.

11. The method of Claim 1, wherein said pulsed electromagnetic emission has a pulse length of less than 20 ms.

Patentansprüche

1. Verfahren zur Herstellung eines elektrisch leitfähigen Dünnfilms auf einem Substrat, wobei das Verfahren Folgendes umfasst:

- Dispergieren (110) einer reduzierbaren Metallverbindung und eines Reduktionsmittels in einer Flüssigkeit;
- Abscheiden (120) der Dispersion auf einem Substrat (203), um einen Dünnfilm (202) zu bilden; und
- Aussetzen (130) des Dünnfilms (202) zusammen mit dem Substrat (203) gegenüber einer gepulsten elektromagnetischen Emission unter einer Umgebungsatmosphäre, um die reduzierbare Metallverbindung und das Reduktionsmittel chemisch umzusetzen, um den Dünnfilm (202) elektrisch leitfähig zu machen;

dadurch gekennzeichnet, dass:

- das Substrat eines aus Papier oder Polyethylen terephthalat ("PET") ist.

2. Verfahren nach Anspruch 1, wobei das Papier mit einer Druckfarben-Empfangsschicht beschichtet ist.

3. Verfahren nach Anspruch 1, wobei das PET mit einer Druckfarben-Empfangsschicht beschichtet ist.

4. Verfahren nach Anspruch 1, wobei die reduzierbare Metallverbindung ein Metalloxid ist.

5. Verfahren nach Anspruch 1, wobei die reduzierbare Metallverbindung eine Verbindung ist, die aus der Gruppe bestehend aus Molybdänoxid, Wolframoxid, Rheniumoxid, Eisenoxid, Rutheniumoxid, Osmiumoxid, Kobaltoxid, Rhodiumoxid, Iridiumoxid, Nickeloil, Palladiumoxid, Platinoxid, Kupferoxid, Silberoxid, Goldoxid, Zinkoxid, Cadmiumoxid, Indiumoxid, Germaniumoxid, Zinnoxid, Bleioxid, Antimonoxid und Bismutoxid ausgewählt ist.

6. Verfahren nach Anspruch 1, wobei die reduzierbare Metallverbindung ein Metallsalz ist.

7. Verfahren nach Anspruch 1, wobei das Reduktionsmittel eine Verbindung ist, die aus der Gruppe bestehend aus Alkoholen, Aldehyden, Carbonsäuren und Ruß ausgewählt ist.

8. Verfahren nach Anspruch 1, wobei das Reduktionsmittel aus einer Gruppe bestehend aus Aluminium, Magnesium und Lithium ausgewählt ist.

9. Verfahren nach Anspruch 1, wobei das Reduktionsmittel weiters Glycerin, Ascorbinsäure, 1,2-Hexandiol und Glutarsäure umfasst.

11. Verfahren nach Anspruch 1, wobei die gepulste elektromagnetische Emission eine Pulslänge von weniger als 20 ms aufweist.

Revendications

1. Procédé pour produire un film mince électriquement conducteur sur un substrat, ledit procédé comprenant les étapes consistant à :

- disperser (110) un composé de métal réductible et un agent réducteur dans un liquide ;
- déposer (120) ladite dispersion sur un substrat (203) pour former un film mince (202) ; et
- expouser (130) ledit film mince (202) avec ledit substrat (203) à une émission électromagnétique pulsée dans une atmosphère ambiante pour faire réagir chimiquement ledit composé de métal réductible et ledit agent réducteur pour rendre ledit film mince (202) électriquement conducteur ;

caractérisé en ce que :

- ledit substrat est un parmi du papier ou du polyéthylène tééphthalate ("PET").

2. Procédé selon la revendication 1, dans lequel ledit papier est revêtu d’une couche de réception d’encre.

3. Procédé selon la revendication 1, dans lequel ledit PET est revêtu d’une couche de réception d’encre.

4. Procédé selon la revendication 1, dans lequel ledit composé de métal réductible est un oxyde de métal.

5. Procédé selon la revendication 1, dans lequel ledit composé de métal réductible est un composé choisi dans le groupe consistant en l’oxyde de molybdène, l’oxyde de tungstène, l’oxyde de rhénium, l’oxyde de fer, l’oxyde de ruthénium, l’oxyde d’osmium, l’oxyde de cobalt, l’oxyde de rhodium, l’oxyde d’iridium, l’oxyde de nickel, l’oxyde de palladium, l’oxyde de...
platine, l’oxyde de cuivre, l’oxyde d’argent, l’oxyde d’or, l’oxyde de zinc, l’oxyde de cadmium, l’oxyde d’indium, l’oxyde de germanium, l’oxyde d’étain, l’oxyde de plomb, l’oxyde d’antimoine et l’oxyde de bismuth.

6. Procédé selon la revendication 1, dans lequel ledit composé de métal réductible est un sel de métal.

7. Procédé selon la revendication 1, dans lequel ledit agent réducteur est un composé choisi dans le groupe constitué par des alcools, des aldéhydes, des acides carboxyliques et le noir de carbone.

8. Procédé selon la revendication 1, dans lequel ledit agent réducteur est choisi dans un groupe comprenant l’aluminium, le magnésium et le lithium.

9. Procédé selon la revendication 1, dans lequel ledit agent réducteur comprend en outre du glycérol, de l’acide ascorbique, du 1,2-hexanediol et de l’acide glutarique.

10. Procédé selon la revendication 1, dans lequel ladite dispersion comprend en outre la dispersion dudit composé de métal réductible et dudit agent réducteur en utilisant un nombre quelconque d’agents dispersants comprenant de la polyvinylpyrrolidone ou de copolymères d’acrylate-polystyrène.

11. Procédé selon la revendication 1, dans lequel ladite émission électromagnétique pulsée a une longueur d’impulsion inférieure à 20 ms.
FIG. 1

START

110

DISPERSE A REDUCIBLE METAL COMPOUND AND A REDUCING AGENT IN A LIQUID

120

DEPOSIT DISPERSION ON A LOW-TEMPERATURE SUBSTRATE AS A THIN FILM

130

EXPOSE THIN FILM AND LOW-TEMPERATURE SUBSTRATE TO A PULSED ELECTROMAGNETIC EMISSION

FIG. 2
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4526807 A [0007]